Erwinia carotovora Evf antagonizes the elimination of bacteria in the gut of Drosophila larvae.
نویسندگان
چکیده
Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as a virulence factor that promotes colonization of the Drosophila larval gut and provokes the triggering of a systemic immune response. Here we have analysed how Evf promotes persistence and colonization of bacteria inside the larval gut. Erwinia evf mutants do not persist in immune-deficient Drosophila, indicating that Evf does not act by counteracting immunity. The results indicated that Evf is not a toxin because various gram-negative bacteria expressing evf can persist without affecting viability of Drosophila larvae. Evf did not appear to be a factor antagonizing a host-specific reaction because in vitro assays failed to reveal detoxifying enzymatic activities against various compounds thought to contribute to the hostile environment of the gut. These findings were corroborated by the observation that Evf is not required for survival in midgut organ cultures. By contrast, bacteria expressing evf allow persistence in trans of bacteria lacking evf indicating that Evf promotes the accumulation of gram-negative bacteria in the anterior midgut by affecting gut physiology.
منابع مشابه
Evf, a virulence factor produced by the Drosophila pathogen Erwinia carotovora, is an S-palmitoylated protein with a new fold that binds to lipid vesicles.
Erwinia carotovora are phytopathogenic Gram-negative bacteria of agronomic interest as these bacteria are responsible for fruit soft rot and use insects as dissemination vectors. The Erwinia carotovora carotovora strain 15 (Ecc15) is capable of persisting in the Drosophila gut by the sole action of one protein, Erwinia virulence factor (Evf). However, the precise function of Evf is elusive, and...
متن کاملA single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster.
Insects are major vectors of plant and animal disease, and bacterial phytopathogens are often disseminated by flies. We have previously reported that some isolates of the phytopathogenic bacterial species Erwinia carotovora infect Drosophila and activate an immune response. Using a genetic screen, we have now identified two genes that are required by E. carotovora to infect Drosophila. One of t...
متن کاملThe phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response.
Although Drosophila possesses potent immune responses, little is known about the microbial pathogens that infect Drosophila. We have identified members of the bacterial genus Erwinia that induce the systemic expression of genes encoding antimicrobial peptides in Drosophila larvae after ingestion. These Erwinia strains are phytopathogens and use flies as vectors; our data suggest that these stra...
متن کاملAntibacterial activity of essential oils from Thymus vulgaris, Trachyspermum ammi and Mentha aquatica against Erwinia carotovora in vitro
Background & Aim: The aim of this study was to assess the bactericidal effect of three medicinal plant species, including Thymus vulgaris, Trachyspermum ammi, and Mentha aquatica on Erwinia carotovora growth. Experimental: This research was done in a factorial to completely randomized design with three concentrations, and three replicates on nutrient agar c...
متن کاملDrosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation.
Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular microbiology
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2007